2,385 research outputs found

    Structural and torsional properties of the Trachycarpus fortunei palm petiole

    Get PDF
    The Trachycarpus fortunei palm is a good example of a palm with a large leaf blade supported by a correspondingly large petiole. The way in which the material and functional properties of the petiole interact is analysed using engineering and botanical methods with a view to understanding how the petiole functions from a structural standpoint. Initially, the histological aspects of the petiole are analysed at a microscopic level from sections of the petiole taken at regular intervals along its axis, in order to determine the density and location of the vascular bundles. A modified torsion rig was used to measure the torsion and shear stress variation along petiole sample lengths. Knowledge of vascular bundle placement within the petiole sections and their torsional loading characteristics contribute to understanding the petiole function

    Genetic algorithm search for stent design improvements

    Get PDF
    Copyright @ 2002 SpringerThis paper presents an optimisation process for finding improved stent design using Genetic Algorithms. An optimisation criterion based on dissipated power is used which fits with the accepted principle that arterial flows follow a minimum energy loss. The GA shows good convergence and the solution found exhibits improved performance over proprietary designs used for comparison purposes

    Effects of stents under asymmetric inflow conditions

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2002 IOS PressPatient-to-patient variations in artery geometry may determine their susceptibility to stenosis formation. These geometrical variations can be linked to variations in flow characteristics such as wall shear stress through stents, which increases the risk of restenosis. This paper considers computer models of stents in non-symmetric flows and their effects on flow characteristics at the wall. This is a fresh approach from the point of view of identifying a stent design whose performance is insensitive to asymmetric flow. Measures of dissipated energy and power are introduced in order to discriminate between competing designs of stents

    Beyond the virtual intracranial stenting challenge 2007: non-Newtonian and flow pulsatility effects

    Get PDF
    The attached article is a post print version of the final published version which may be accessed at the link below. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved.The Virtual Intracranial Stenting Challenge 2007 (VISC’07) is becoming a standard test case in computational minimally invasive cerebrovascular intervention. Following views expressed in the literature and consistent with the recommendations of a report, the effects of non-Newtonian viscosity and pulsatile flow are reported. Three models of stented cerebral aneurysms, originating from VISC’07 are meshed and the flow characteristics simulated using commercial computational fluid dynamics (CFD) software. We conclude that non-Newtonian and pulsatile effects are important to include in order to discriminate more effectively between stent designs

    Enhanced visualisation of complex thermofluid data: Vertical and horizontal combined convection and microscale heat transfer cases

    Get PDF
    Copyright @ 2000 UITIn general, convective heat transfer is an 'n-dimensional' problem where n is well in excess of 3 for steady flows. Traditionally, the method of dimensional analysis results in a small number of dimensionless groups. In the case of steady forced convection these can reduce to three, namely the Nusselt (Nu), Reynolds (Re) and Prandtl (Pr) numbers, for heat transfer, fluid flow regime and fluid properties respectively. Again, traditionally, data are presented on log-log graphs, say of Nu versus Re, with Pr being a possible third parameter. For natural convection, the Grashof number (Gr) expresses buoyancy effects in place of Re, while for combined (natural and forced) convection Gr becomes additional to, rather than replacing, Re. Using sets of data for: (a) vertical combined convection in nuclear safety, (b) horizontal combined convection review material, and (c) microchannel heat transfer, in the first part of this paper we survey this problem. We reach the following conclusions: that heat transfer data are presented in either 'holistic' or 'reductive' modes, and that other thermodynamic performance data are related to the generic scientific cases of (a) 3-dimensional space and (b) multi-dimensional space. In the second part of the paper we present a first attempt at applying design-type procedures to specifying this problem. Visualisation priorities are suggested from which particular solutions will be developed in future

    Modelling of two-component turbulent mass and heat transfer in air-fed pressurised suits

    Get PDF
    This article has been accepted for publication in the Flow, Turbulence and Combustion journal.In this paper the modelling of an important industrial problem is addressed, which involves the two-component turbulent flow with heat transfer that takes place inside protective clothing. The geometry of the flow boundaries is reconstructed in a CAD system from photogrammetry scan data. The overall model is sufficiently realistic to allow, after validation, design improvements to be tested. Those presented here allow the reduction of hot spots over the worker’s body surface and increase thermal comfort.This project is funded by the Engineering and Physical Sciences Research Council and the UK Atomic Energy Authority
    • 

    corecore